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ABSTRACT
Numerical reasoning is an essential task for supporting machine
learning applications, such as recommendation and information re-
trieval. The reasoning task aims to compare two items and infer new
facts (e.g., is taller than) by leveraging existing relational informa-
tion and numerical attributes (e.g., the height of an entity) in knowl-
edge graphs. However, most existing methods rely on leveraging
attribute encoders or additional loss functions to predict numerical
relations. Therefore, the prediction performance is often not robust
in cases when attributes are sparsely observed. In this paper, we
propose a Relation-Aware attribute representation learning-based
Knowledge Graph Embedding method for numerical reasoning
tasks, which we call RAKGE. RAKGE incorporates a newly pro-
posed attribute representation learning mechanism, which can lever-
age the association between relations and their corresponding nu-
merical attributes. In addition, we introduce a robust self-supervised
learningmethod to generate unseen positive and negative examples,
thereby making our approach more reliable when numerical at-
tributes are sparsely available. In the evaluation of three real-world
datasets, our proposed model outperformed state-of-the-art meth-
ods, achieving an improvement of up to 65.1% in 𝐻𝑖𝑡𝑠@1 and up to
52.6% in𝑀𝑅𝑅 compared to the best competitor. Our implementation
code is available at https://github.com/learndatalab/RAKGE.

CCS CONCEPTS
• Computing methodologies → Knowledge representation
and reasoning.
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1 INTRODUCTION
Numerical reasoning is a form of simulated thinking that involves
numerical attributes (e.g., height) and operations such as sorting
and comparison. While it has been addressed in many Natural Lan-
guage Processing (NLP) applications [1], it has received relatively
less attention in the context of Knowledge Graphs (KGs). Numerical
reasoning over KGs can uncover missing numerical relationships
or orders among entities, but the sparsity of numerical attributes in
KGs makes this task challenging. For instance, knowledge graphs
about customers in a company often lack information on some cus-
tomers’ ages, revenues, and expenses. However, the lack of effective
methods for processing KGs with sparsely observed numerical at-
tributes hinders the improvement of information services, such as
recommendation systems and question-answering tasks.

Knowledge Graph Embedding (KGE) has been proposed as a
method for encoding entities and relationships of knowledge graphs
(KGs) into low-dimensional vectors while preserving the inherent
relational properties between the entities. Traditional KGE models,
such as TransE [5] and TransR [36], learn vector representations of
head entities, relations, and tail entities with the aim of maximizing
the performance of link prediction, i.e., a single-hop reasoning task.
However, these models do not exploit numerical attributes, which
limits the performance of numerical reasoning tasks. Recent efforts
have been made to incorporate attributes into KGE models, such as
LiteralE [15], TransEA [30], and MT-KGNN [20], to solve this issue.
For instance, in LiteralE [15], attribute values are represented as a
literal vector, which is combined with the entity embedding through
a gating function to form a single embedding vector. The combined
entity representation is then fed into the score functions of the
corresponding KGE models, such as TransE and TransR, allowing
for the inclusion of richer information in the entity embeddings
for numerical reasoning tasks. Other existing methods [20, 30] are
also limited to introducing simple attribute encoders or additional
regression loss functions for the reasoning tasks.

https://github.com/learndatalab/RAKGE
https://doi.org/10.1145/3580305.3599338
https://doi.org/10.1145/3580305.3599338
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Meanwhile, GraphNeural Networks (GNNs) have been leveraged
in KGE problems [17, 18, 24] in order to learn higher-order connec-
tivity. They aggregate information from neighboring nodes to learn
entity representations, and the score functions of the existing KGE
models [5, 11, 12] are adopted to model the relations among entities.
Although GNN-based KGE models have demonstrated promising
results for graph completion tasks, recent studies (e.g., LTE [37])
have suggested that many of these models are overly complex and
redundant. The study found that a simple linear transformation
applied to existing KGEmodels could outperform or produce results
equivalent to GNN-based models.

To overcome the problems of previous approaches, we propose
a new Relation-Aware attribute representation learning-based
Knowledge Graph Embedding method for numerical reasoning
tasks, namelyRAKGE. Our proposedRAKGEmethod can leverage
the association between entity relations and numerical attributes
by obtaining the relevance (or importance) of each attribute using a
multi-head attention mechanism. Therefore, our model can obtain
more robust attribute representations, even when the attributes are
sparsely available. For example, if the height attribute is partially
or completely missing for head/tail entities in a height comparison
task, our algorithm can assign more importance to the existing
weight and age attributes to obtain representations. The attribute
representations are then combined with the entity embeddings
using a gating function.

Furthermore, we propose a novel contrastive learning method
to generate more appropriate positive/negative examples for nu-
merical reasoning. Contrastive learning, a representative method
of self-supervised learning, aims to maximize the agreement be-
tween input data and its augmentation while simultaneously re-
pelling other data samples, thereby providing effective supervision.
Although contrastive learning has been successful in various do-
mains [9, 16, 32, 33], it remains challenging to directly apply the
augmentation-based contrastive learning in the numerical reason-
ing tasks. Because numeric attributes are continuous, randomly
perturbing numeric values can lead to severe information loss. To
capture the continuous characteristics of numeric attributes, we
devised a new mixup-based augmentation method that produces
true hard positive/negative samples for numerical reasoning.

The contributions of this paper can be summarized as follows:
• We propose a relation-aware attribute representation learning
approach that captures the relevance of numeric attributes
with respect to each relation.

• We propose a novel contrastive learning method that gener-
ates true but hard positive/negative samples for numerical
reasoning.

• Our proposed model demonstrates consistently and signifi-
cantly better performance than recent KGE models, includ-
ing LiteralE and message passing-based models, on three
real-world datasets in all evaluation measures.

2 RELATEDWORK
2.1 Knowledge Graph Embedding
In recent years, various Knowledge Graph Embedding (KGE) meth-
ods have been proposed to capture the latent representations of
entities and relations in knowledge graphs (KGs). TransE [5] is

a translation-based method that optimizes the equation ℎ𝑒𝑎𝑑 +
𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 ≈ 𝑡𝑎𝑖𝑙 , leading to several extensions such as TransH [29]
and TransR [36]. DistMult [12] proposes a tri-linear dot product
of head, relation, and tail as a score function, and ComplEx [22]
extends DistMult by using complex-valued embeddings to cover
asymmetric relations. ConvE [11] employs convolutional layers
to extract features from the head entity and relation. Additionally,
there have been various efforts to embed KGs into hyperbolic space
to model hierarchical relations, such as ConE [2], MuRP [3], and
AttH [8]. However, these methods often suffer from the incomplete-
ness of KGs as they depend solely on structural information.

2.2 Knowledge Graph Embedding with
Numerical Attributes

To address the incompleteness issue in KGs, several KGE models
aim to incorporate side information of entities, such as numerical
attributes (e.g., height, age, and weight). For example, MT-KGNN
[20] and TransEA [30] are multi-task learning methods to predict
numeric attribute values and entity/relation embeddings. KBLRN
[13] uses numerical values to learn a KGE model by considering the
differences between the numerical values of entity pairs. Recently,
LiteralE [15] introduces a learnable gating function to integrate
entity embedding and numeric attributes. However, these methods
are often not robust when attributes are sparsely observed, and
they do not consider relational information when incorporating
attributes in KGE. To effectively exploit the relation information, we
propose an encodingmethod that considers relation-aware attribute
relevance.

2.3 GNN-based Knowledge Graph Embedding
To model the high-order connectivity in knowledge graphs, various
extensions of graph neural networks (GNNs) have been proposed
for KGE problems. R-GCN [17] includes a relation-specific transfor-
mation matrix in the neighborhood aggregation step, and WGCN
[18] has relations with learnable scalar weights that are multiplied
by the incoming neighborhood message. CompGCN [24] jointly
embeds nodes and relations and provides various composition op-
erations between entities and relations. However, these models do
not consider numerical values, making it difficult to apply them to
numerical reasoning tasks.

Furthermore, several self-supervised GNN-based models have
employed contrastive learning (CL) to learn entity/graph repre-
sentation. HeCO [28] introduced co-contrastive learning by sug-
gesting two views: the network-schema and meta-path views to
capture both local and global features of the entity. SLiCE [27]
learns contextual subgraph representations by allowing each close
node to attract each other. SimGCL [33] is an augmentation-free
CL method that adds uniform noises to the entity representation.
However, none of the above methods considers continuous values
in augmentation; therefore, they cannot guarantee the effectiveness
of their proposed method for numerical reasoning tasks. In con-
trast, our newly proposed CL method can generate guaranteed but
hard positive/negative samples using a mixup-based augmentation
technique, which compensates for the sparse observations in the
numerical value space.
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3 PRELIMINARIES
3.1 Problem Definition
Let us denote the set of entities as E and the set of relations as R. A
knowledge graph G can be defined as {(ℎ, 𝑟, 𝑡) | ℎ, 𝑡 ∈ E, 𝑟 ∈ R}. Let
X ∈ R | E |× |M| be an entity-numeric value matrix for all entities in
G, where M is the set of numeric attribute fields (e.g., age, height,
and debut_year). 𝑋𝑖𝑚 indicates the𝑚-th numeric value of entity 𝑖 .

Numerical reasoning task. We formalize the numerical reason-
ing [15] as a link prediction task in an attributed KG. Link prediction
maps each triple (ℎ, 𝑟, 𝑡) to a score by leveraging the KGE models,
where a higher score indicates that the triple is more likely to be
true. Our goal is to learn a function𝜓 : E×R×E → R that predicts
the plausibility of possible triples. In this paper, we define a numer-
ical reasoning task as comparing two entities concerning a single
aspect, such as height or weight. The comparison of entities based
on numerical attributes has been less explored, and we constructed
and evaluated new large-scale datasets with varying sparsity levels
for this purpose.

3.2 Knowledge Graph Embedding Methods
As in previous studies, our model employs existing KGE methods
to predict the plausibility of a triple. In this paper, we introduce
TransE [5] and Order-embedding [26]. Let eh, et,, and er denote
the embeddings of entities ℎ and 𝑡 and relation 𝑟 , respectively. The
plausibility score function for a triple (eh, er, et) is calculated as
follows.

TransE. is a translation-based method that aims to optimize
eh + er ≈ et.

𝑠𝑐𝑜𝑟𝑒 (eh, er, et) = 𝜖 − ∥eh + er − et∥1/2 , (1)

where 𝜖 is a hyperparameter and ∥ · ∥ can be L1 or L2 distance.

Order-embedding. learns ordered representations to model the
partial order structure in the hierarchy. The main idea of Order-
embedding is to embed elements in the higher position has smaller
coordinates than those in the lower position. However, in the nu-
merical reasoning task, it is more intuitive that the lower position
(e.g., 160 cm) has smaller coordinates than the higher position (e.g.,
170cm). Therefore, we reformulate this idea in terms of the score
function of KGE as follows:

𝑠𝑐𝑜𝑟𝑒 (eh, et) = 𝜖 − ∥𝑚𝑎𝑥 (0, et − eh)∥2, (2)

where 𝜖 is a hyperparameter.

4 METHODOLOGY
In this section, we first introduce the overall structure of RAKGE,
which enhances numerical reasoning through relation-aware at-
tribute representation learning. As shown in Figure 1(a), RAKGE
consists of three main components: a Relation-Aware Encoder (RA
Encoder), a positive/negative sample generator, and a score func-
tion. The first component, the RA Encoder, adaptively encodes the
numeric attributes of entities based on the relation they are asso-
ciated with. The second component, the positive/negative sample
generator, then produces synthetic but true positive/negative sam-
ples based on the encoded entity embeddings. Finally, our score

function, designed specifically for numerical reasoning, calculates
the plausibility score of the target triple.

4.1 Relation-Aware (RA) Encoder
The components of the RA Encoder are illustrated in Figure 1(b).
The RA Encoder is composed of three layers: numeric value em-
bedding, relation-aware attention, and gating layer. The numeric
value embedding layer converts each numeric value of the entity
into a vector representation. The relation-aware attention layer
generates an attribute vector that encodes numeric information by
considering a specific relation. Finally, the gating layer combines
the relation-aware attribute vector and entity embedding.

Numeric Value Embedding Layer. As described in our prob-
lem definition, one entity has multiple numeric values for different
attributes (e.g., 38 years old, 5.87 ft/in, and 2008 year), and each
attribute field (e.g., age, height, debut_year) has its own unique dis-
tribution. Hence, it is crucial to develop a method that incorporates
the context of the attribute field while preserving the properties
of the scalars (e.g., magnitude and quantity). To achieve this, we
transform each attribute field into an embedding space using the
field embedding method [14, 19].

For observable scalars, we map them into a low-dimensional
embedding space using a learnable embedding matrix. For miss-
ing scalars, instead of using a fixed value, such as zero, we use a
learnable special missing value embedding to preserve the magni-
tude information and prevent the task from being threatened. The
representation of both missing and observable scalars is given by:

ami =

{
Wm

x vm If 𝑋𝑖𝑚 is missing,
(wm𝑋𝑖𝑚) ⊙ vm Otherwise, (3)

where ⊙ represents point-wise multiplication. vm ∈ R𝑑𝑎𝑡𝑡 is the
embedding vector of the numeric attribute field𝑚, where𝑑𝑎𝑡𝑡 repre-
sents the attribute embedding dimension. 𝑋𝑖𝑚 is the corresponding
numeric value of the entity 𝑖 .wm ∈ R𝑑𝑎𝑡𝑡 andWm

x ∈ R𝑑𝑎𝑡𝑡×𝑑𝑎𝑡𝑡 are
linear transformations that learn the context of each value and at-
tribute. We denote ami ∈ R𝑑𝑎𝑡𝑡 as the𝑚-th field attribute embedding
of the entity 𝑖 .

Relation-aware Attention Layer. The main contribution of our
model is the effective learning of numerical attributes vm by consid-
ering the relations. For example, when predicting (Ryan Reynolds,
is_taller_than, Blake Lively), the height and weight attributes should
be given more consideration than the salary attribute. We pro-
pose a relation-aware attention mechanism using the multi-head
self-attention [25] to capture the importance of numeric attributes
according to each relation.

First, the relation embedding er ∈ R𝑑𝑒𝑚𝑏 is projected onto the
attribute embedding space using a single layer perceptron 𝑓𝑎𝑡𝑡 .
Thereafter, the relation-aware attention layer takes the projected
relation embedding eattr ∈ R𝑑𝑎𝑡𝑡 as the query and attribute embed-
dings a1i , · · · , a

|M |
i ∈ R𝑑𝑎𝑡𝑡 as the key and value. Under a specific

attention head 𝑘 , we map eattr and a1i , · · · , a
|M |
i onto smaller sub-

spaces and capture the attention score. The attention weight 𝛼 (𝑘 )
𝑟,𝑖,𝑚

of the attribute embedding ami is expressed as follows:

eattr = 𝑓𝑎𝑡𝑡 (er), (4)
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(a) RAKGE (b) RA Encoder

Figure 1: (a) Overview of our proposed model (RAKGE). For relation-aware embedding, all entities are encoded by the RA
Encoder, and then all of these are utilized to obtain the triplet score. Generators exist for the numerical reasoning task. By
using generators, we can generate both hard positive and hard negative samples. (b) Structure of the Relation-Aware (RA)
Encoder. In the RA attention layer, we calculate the importance of numerical values concerning each relation. The output is a
newly generated entity’s representation.

𝑠 (𝑘 ) (eattr , ami ) =< W(k)
Q eattr ,W(k)

K ami >, (5)

𝛼
(𝑘 )
𝑟,𝑖,𝑚

=
exp(𝑠 (𝑘 ) (eattr , ami ))∑ |M |
𝑛=1 exp(𝑠 (𝑘 ) (eattr , ani ))

, (6)

where W(k)
Q ,W(k)

K ∈ R𝑑𝑠𝑢𝑏×𝑑𝑎𝑡𝑡 are linear transformations that
project relation embedding eattr and attribute embedding ami into
low-dimensional subspaces, respectively. Next, 𝑠 (𝑘 ) outputs the
attention score between a relation and an attribute by the inner
product < ·, · > for each attention head 𝑘 .

We repeat thismechanism for all attribute fields𝑚 = 1, 2, · · · , |M|.
The attention weight is then normalized using equation Eq. (6) and
multiplied by the corresponding attribute embedding as follows:

a(k)r,i =

|M |∑︁
𝑚=1

𝛼
(𝑘 )
𝑟,𝑖,𝑚

(W(k)
V ami ), (7)

where W(k)
V ∈ R𝑑𝑠𝑢𝑏×𝑑𝑎𝑡𝑡 is a linear transformation matrix that

projects attribute embedding ami into low-dimensional subspaces.
Normalization captures the importance of each numeric attribute
from the given relation. We repeat this step for all attention heads
𝑘 = 1, 2, · · · , 𝐾 , where 𝐾 is the number of multi-head attentions.
The final attribute embedding for entity 𝑖 related to 𝑟 is as follows:

ar,i = a(1)r,i ⊕ a(2)r,i ⊕ · · · ⊕ a(K)r,i , (8)

where ⊕ is a concatenation operator. We consider ar,i ∈ R𝑑𝑎𝑡𝑡 as
the attribute vector of entity 𝑖 , which is aware of relation 𝑟 .

Gating Layer. To balance the relation-aware attribute vector ar,i
and an entity embedding ei ∈ R𝑑𝑒𝑚𝑏 , a gating layer is introduced
to merge them as follows:

g = 𝜎 (Wgeei +Wgaar,i + b), (9)

u = 𝜏 (Wu (ei ⊕ ar,i)), (10)

eattr,i = g ⊙ u + (1 − g) ⊙ ei, (11)

where Wu ∈ R𝑑𝑒𝑚𝑏×(𝑑𝑎𝑡𝑡+𝑑𝑒𝑚𝑏 ) , Wge ∈ R𝑑𝑒𝑚𝑏×𝑑𝑒𝑚𝑏 , and Wga ∈
R𝑑𝑒𝑚𝑏×𝑑𝑎𝑡𝑡 are linear transformations and b is a bias. 𝜎 is a sigmoid
function, and 𝜏 is hyperbolic tangent function. We name eattr,i ∈
R𝑑𝑒𝑚𝑏 as the attribute-enriched vector of entity 𝑖 . To adaptively
filter numeric information, we adopt the gating layer proposed
in [15], which is a variation of the GRU [10]. The reset gate is
repurposed to determine the manner in which past relation-aware
information is used.

4.2 Contrastive Learning
Generator. For numerical reasoning, generating high-quality

positive and negative samples is crucial, as numerical data consist of
continuous scalar values that are sensitive to even small differences.
For example, consider the head entity ℎ with a height of 170 cm and
the relation 𝑟 , is_taller_than. The ideal learning scenario involves
generating all possible positive tail entities with heights less than
170 cm. It is particularly important to clearly differentiate between
the tails near the decision boundary, such as those ranging from
169 to 171 cm. To address this problem, first, given the head entity
ℎ and relation 𝑟 , we generate unseen positive/negative samples as
follows:

e+ =

∑ | P [ℎ,𝑟 ] |
𝑖=1 𝑤𝑖eattr,i∑ | P [ℎ,𝑟 ] |
𝑖=1 𝑤𝑖

, 𝑖 ∈ P[ℎ, 𝑟 ], (12)

e− =

∑ |N[ℎ,𝑟 ] |
𝑗=1 𝑤 𝑗eattr,j∑ |N[ℎ,𝑟 ] |
𝑗=1 𝑤 𝑗

, 𝑗 ∈ N [ℎ, 𝑟 ], (13)
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where P[ℎ, 𝑟 ] = {𝑖 | (ℎ, 𝑟, 𝑖) ∈ G}, N[ℎ, 𝑟 ] = { 𝑗 | ( 𝑗, 𝑟 , ℎ) ∈ G}. To
promote the diversity of the representations, 𝑤𝑖 and 𝑤 𝑗 are ran-
domly selected from a uniform distribution [0,1] for every epoch.
P[ℎ, 𝑟 ] represents the set of positive tails containing entities whose
height is less than 170 cm (e.g., 155, 160, and 165 cm). N[ℎ, 𝑟 ] rep-
resents the set of negative tails containing entities whose height is
greater than 170 cm (e.g., 176, 178, and 180 cm). Unlike traditional
link prediction, where the negative set consists of unrelated entities,
our negative set is composed of entities that are headed in opposite
directions.

To synthesize harder positive/negative samples using the mixup
method [34], we introduce a variant called head mixing. The head
mixing technique is proposed as follows:

e+mix = 𝛼 · e+ + (1 − 𝛼) · eattr,h, (14)

e−mix = 𝛽 · e− + (1 − 𝛽) · eattr,h, (15)

where 𝛼, 𝛽 are mixing coefficients sampled from the uniform distri-
bution [0,1] for every epoch. As a result of the RA Encoder, the head
ℎ has an attribute-enriched vector that emphasizes the numerical
value 170 and field height. Because our final goal is to distinguish
whether each tail has a height of less than 170 cm, head mixing
embedding with each weighted summation of positive and negative
samples makes the samples closer to a decision boundary and more
difficult to distinguish. Note that e+mix and e−mix do not cross the
decision boundary, which means that they are always true. Our
contrastive learning loss is defined as follows:

𝐿𝐶𝐿 = − 1
|G|

∑︁
𝑙∈G

log𝜎 (𝑠𝑐𝑜𝑟𝑒 (eattr,h, er, e
+
mix) − 𝑠𝑐𝑜𝑟𝑒 (e

att
r,h, er, e

−
mix)),

(16)
where 𝑠𝑐𝑜𝑟𝑒 can be any score function, such as TransE (Eq. (1)).
By randomly mixing the positive tails (Eq. (12)), and head mixing
(Eqs. (14) - (15)), it is possible to obtain positive tails that do not
exist in training data. Therefore, we expect our model to better un-
derstand the inaccessible attribute space by exploiting only training
data.

4.3 Training
Score Function. A naive assumption for typical KGE methods is

calculating the distance between head, relation, and tail. However,
these methods have severe issues in that they do not work well
for complex relation patterns. For example, given the head entity ℎ
(height = 170 cm) and relation 𝑟 (is_taller_than) and leveraging the
TransE score function, two tail entities 𝑡1 (height = 160 cm) and 𝑡2
(height = 150 cm) can be mapped to the same position. To alleviate
this problem, we designed a plausibility score function specific to
numerical reasoning tasks as follows:

𝑠𝑐𝑜𝑟𝑒 (eattr,h, er, e
att
r,i ) = 𝜖 −

eattr,h + er − eattr,i


1/2

+𝛿
𝑚𝑎𝑥 (0,Wreattr,h −Wreattr,i )

2 , (17)

where 𝛿 is a weight for the numerical reasoning score function.
The first term is derived from TransE (Eq. (1)), and the second term
is the variation of the Order-embedding (Eq. (2)). The projection
matrixWr ∈ R𝑑𝑒𝑚𝑏×𝑑𝑒𝑚𝑏 plays a pivotal role in mapping entities

to a relational-specific space. This implies that each entity has a
different order depending on the type of relations.

Loss Function. We used binary cross-entropy loss as presented
in ConvE [11] and LiteralE [15]. We applied the sigmoid function to
the resulting score obtained using Eq. (17) so that the score of each
triple can be treated as a probability. Let T = G ∪ G− denote the
training dataset, where G− denotes the set of negative knowledge
triples {(ℎ, 𝑟, 𝑡 ′) | ℎ, 𝑡 ′ ∈ E, 𝑟 ∈ R, (ℎ, 𝑟, 𝑡 ′) ∉ G}. The binary-cross
entropy loss is then defined as follows:

𝐿𝐵𝐶𝐸 = − 1
|T |

∑︁
𝑙∈T

(𝑦𝑙 log(𝑝𝑙 ) + (1 − 𝑦𝑙 ) log(1 − 𝑝𝑙 )), (18)

where 𝑝𝑙 ∈ [0, 1] is the probability of each triple 𝑙 ∈ T . 𝑦𝑙 ∈ {0, 1}
is the ground truth label. Combining Eq. (16) and Eq. (18), the final
loss can be expressed as follows:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝐵𝐶𝐸 + _𝐿𝐶𝐿, (19)

where _ is the coefficient of contrastive loss. The details of learning
the losses are described in Algorithm 1 in the Appendix.

4.4 Time Complexity Analysis
RAKGE consists of the RA Encoder, positive/negative sample gen-
erators, and a score function. The RA Encoder is further divided
into a numeric value embedding layer, a relation-aware attention
layer, and a gating layer. In the numeric value embedding layer,
we transform the attribute field into an embedding vector with
a time complexity of 𝑂 ( |M|). The relation-aware attention layer
also has a time complexity of 𝑂 ( |M|) because the number of keys
and values corresponds to the number of attribute fields, and the
query is the target relation. The gating layer combines the en-
tity embedding with the attribute embedding without changing
the time complexity. Consequently, the time complexity of the RA
Encoder for processing a single triple is 𝑂 ( |M|). Our contrastive
learning method generates positive and negative samples and is
associated with Eqs. (12) - (13). The time complexity of this pro-
cess is proportional to the numbers of positive samples |P [ℎ, 𝑟 ] |
and negative samples |N [ℎ, 𝑟 ] | for a given triple (ℎ, 𝑟, 𝑡). This re-
sults in the time complexity of𝑂 ( |M| ·𝑚𝑎𝑥_𝑑𝑒𝑔), where𝑚𝑎𝑥_𝑑𝑒𝑔
denotes the maximum relation-specific node degree. Using the
TransE score function in calculating the score of the model does
not change the time complexity, as it still involves only summation
or subtraction operations. Therefore, the time complexity remains
unchanged. In summary, the overall time complexity of RAKGE is
𝑂 (T · (|M| + |M| ·𝑚𝑎𝑥_𝑑𝑒𝑔)) ≈ 𝑂 ( |T | ·𝑚𝑎𝑥_𝑑𝑒𝑔), where T is
the number of positive and negative triples used for training.

5 EXPERIMENT
5.1 Dataset
Three real-world KG datasets were used to evaluate the proposed
model on a numerical reasoning task.

US-Cities is a dataset from the United States Cities Database 1. It
contains 75 numeric attribute fields of cities in the USA (e.g., latitude
and percentage of income). We generated comparison relations be-
tween cities by selecting some of these fields (e.g., has_more_incomes).

1https://simplemaps.com/data/us-cities
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Moreover, structural relations are created between cities and other
components (e.g., is_located_in).

Spotify is a knowledge graph from Spotify for Developers 23.
We set each song as an entity, and each entity has 10 attributes
containing numerical features, such as loudness and energy. The
comparison relations include which song is louder than or has more
energy than another song.

Credit is a numerical comparison graph constructed from default
payments in Taiwan [31]. Credit card holders correspond to entities,
and the numerical comparison relations (e.g., has_higher_credit) are
generated by comparing numerical attributes (e.g., credit) between
each entity pair. Moreover, we connected the cardholder entities
to other entities (e.g., high_school, university) through structural
relations (e.g., education), which can potentially aid in numerical
comparison.

Furthermore, to make the numerical comparison task more re-
alistic, we performed two modifications on all of these datasets.
First, we masked 20% of numerical values as zeros (missing values).
Second, we employed a minimal number of triples as training sets.
The remaining triples were used for evaluation. The statistics of
the overall datasets are given in Appendix A.1.

5.2 Baseline
We classified various existing representation learning methods into
five groups: Euclidean KGE, Hyperbolic KGE, GNN-based KGE,
Attributed KGE, and Self-supervised model for graph.

• Euclidean KGE is a representation learning method that
models entity and relation embeddings in Euclidean space.
While TransE [5] employs euclidean distance, ConvE [11],
ComplEx [22], TuckER [4], and DistMult [12] use inner prod-
uct as a distancemeasure. Order-embedding [26], HAKE [35],
and MuRE [3] capture hierarchical relations. The perfor-
mance improvement strategy utilized in LTE-KGE [37] was
implemented in all Euclidean KGE baselines we mentioned
above.

• Hyperbolic KGE operates well in circumstances where
relations in KGs are hierarchical. MuRP [3], ConE [2], and
AttH [8] model hierarchical relations in latent space, and
GIE [7] considers both hierarchical and ring-like structures.

• GNN-based KGE makes use of GCN layers as entity en-
coders and predicts the plausibility score of each triple using
the score functions of other KGE models. In this group, we
adopt two baselines: R-GCN [17] and WGCN [18].

• Attributed KGE utilizes side information to obtain more ro-
bust embeddings in sparsely observed KGs.We compared our
proposed RAKGE to numerical attribute-based KGE models:
KBLRN [13], MT-KGNN [20], and LiteralE [15].

• Self-supervised model for graph enriches node repre-
sentation through self-supervised learning. BiGI [6] and
SLiCE [27] capture both global and local structures to en-
hance node representation. SimGCL [33] adjusts the unifor-
mity of the learned representation by adding random noise
vectors to node representations.

2https://www.kaggle.com/datasets/geomack/spotifyclassification
3https://developer.spotify.com/documentation/web-api

Table 1: Comparison to other models. ‘Numeric-aware Learn-
ing’ indicates the availability of numeric information, while
‘Relation-aware Learning’ indicates the presence of relation-
specific operations. ‘Missing value encoding’ refers to Eq. (3).

TransE BiGI R-GCN LiteralE RAKGE
Numeric-aware Learning × × × ⃝ ⃝
Relation-aware Learning × × ⃝ × ⃝
Self-Supervised Learning × ⃝ × × ⃝
Missing Value Encoding × × × × ⃝

To clarify how our model differs from these models, we distin-
guish between several models in Table 1.

6 RESULT
This section presents two types of experiments. The first experiment
compares the performance of the baseline models with that of our
RAKGE for link prediction. The second experiment is an ablation
study that analyzes the effectiveness of each module in RAKGE.

6.1 Performance Comparison
This section presents the results of the primary purpose of our
model, which involves comparing the numerical values between
two entities and predicting their connections. Our model demon-
strated strong performance across all three datasets and proved its
superiority in numerical reasoning tasks.

6.1.1 Numerical Reasoning. This experiment compared the perfor-
mance of the proposed RAKGE model with that of existing KGE
models in numerical reasoning tasks. The comparison results are
summarized in Table 2. The asymmetric nature of the datasets’
relations is well captured by models such as TransE, ConvE, and
TuckER, whereas symmetric models, such as DistMult, lag behind.
This paper further highlights that while hierarchy-aware models,
such as HAKE and hyperbolic embedding-based methods, were
expected to outperform others because of the hierarchical nature of
their numerical reasoning relations, their performance was limited
by their inability to leverage attributes. Attribute-based models,
such as LiteralE, performed well compared to the other models.
However, KBLRN andMT-KGNN suffered performance degradation
due to the sparsity of numerical attributes. The Order-embedding
model (denoted as Order in the model name column of the ta-
ble) considers the rank of the entities but not the type of relation-
ships, leading to suboptimal performance. The experimental results
demonstrate the effectiveness of the proposed RAKGEmodel, which
outperformed the best competitor, with an improvement of 65.1%
in 𝐻𝑖𝑡𝑠@1 and 52.6% in𝑀𝑅𝑅 on the Spotify dataset.

6.1.2 Self-supervised Learning. To verify the effectiveness of our
contrastive learning method with generated positive/negative sam-
ples, we compared its performancewith that of similar self-supervised
techniques applied to graph-based approaches, including BiGI,
SLiCE, and SimGCL. In particular, although BiGI and SLiCE learn
richer representations by considering both the entire graph (global)
and the corresponding subgraph (local), they are not designed to
model numerical relations. In contrast, RAKGE focuses on gener-
ating hard negative and positive samples to distinguish numerical
magnitudes more explicitly. This renders contrastive learning more
effective for numerical reasoning tasks, as shown in Table 2.
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Table 2: Hits@1, Hits@3, Hits@10, MR, and MRR results for numerical reasoning. Bold scores indicate the best results, while
underlined scores represent the second-best results. The % of Improvement (Imp.) column shows the relative improvements of
RAKGE compared to the second-best scores.

US-Cities Spotify Credit
Model H@1 H@3 H@10 MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10 MR MRR

Euclidean

TransE 0.192 0.249 0.322 368 0.238 0.259 0.354 0.464 116 0.330 0.420 0.510 0.629 38 0.489
DistMult 0.014 0.030 0.063 842 0.033 0.024 0.049 0.129 225 0.063 0.129 0.196 0.298 120 0.189
ConvE 0.159 0.204 0.271 383 0.200 0.233 0.305 0.412 109 0.294 0.170 0.278 0.428 60 0.258
ComplEx 0.085 0.125 0.185 586 0.121 0.125 0.187 0.283 175 0.180 0.291 0.386 0.511 66 0.365
TuckER 0.159 0.214 0.305 317 0.209 0.210 0.294 0.406 101 0.277 0.406 0.514 0.641 34 0.485
Order 0.000 0.295 0.395 249 0.168 0.000 0.350 0.492 91 0.202 0.000 0.474 0.603 44 0.260
HAKE 0.003 0.026 0.063 971 0.026 0.008 0.087 0.118 199 0.073 0.050 0.153 0.274 125 0.132
MuRE 0.032 0.064 0.163 425 0.077 0.000 0.167 0.339 125 0.102 0.068 0.148 0.445 74 0.165

Hyperbolic

MuRP 0.070 0.104 0.172 518 0.107 0.025 0.182 0.313 133 0.122 0.144 0.239 0.424 81 0.229
ConE 0.008 0.040 0.109 246 0.045 0.000 0.006 0.061 216 0.026 0.006 0.239 0.394 84 0.154
AttH 0.052 0.071 0.106 1315 0.073 0.049 0.080 0.141 360 0.084 0.175 0.263 0.391 103 0.248
GIE 0.096 0.136 0.203 577 0.134 0.113 0.175 0.272 191 0.169 0.287 0.386 0.504 73 0.362

GNN-based R-GCN 0.221 0.282 0.362 310 0.270 0.295 0.388 0.501 88 0.367 0.490 0.570 0.669 34 0.551
WGCN 0.029 0.056 0.104 968 0.057 0.095 0.162 0.261 331 0.153 0.170 0.256 0.369 100 0.241

Attributed
LiteralE 0.250 0.313 0.398 237 0.301 0.266 0.377 0.494 74 0.347 0.478 0.564 0.673 34 0.543
KBLRN 0.005 0.015 0.042 2283 0.018 0.017 0.038 0.084 353 0.043 0.007 0.019 0.079 267 0.062
MT-KGNN 0.068 0.102 0.153 695 0.099 0.109 0.183 0.300 141 0.173 0.211 0.302 0.434 75 0.286

Self-supervised
BiGI 0.185 0.249 0.331 359 0.236 0.260 0.354 0.468 118 0.331 0.418 0.507 0.622 39 0.487
SLiCE 0.185 0.250 0.331 359 0.237 0.261 0.354 0.469 117 0.332 0.420 0.510 0.622 38 0.490
SimGCL 0.344 0.415 0.502 162 0.399 0.000 0.255 0.467 59 0.167 0.000 0.399 0.645 22 0.239

RAKGE 0.388 0.468 0.556 170 0.447 0.487 0.602 0.692 37 0.560 0.658 0.731 0.823 12 0.712
% Imp. 12.8 12.8 10.8 -4.9 12.0 65.1 55.2 38.1 37.3 52.6 34.3 28.2 22.3 45.5 29.2

6.2 Model Analysis
6.2.1 Discussions of RAKGE Variants. An ablation study was con-
ducted to compare the performances of RAKGE variants, each with
an individual component of the model removed. First, we treated
missing values as zeros and computed the attribute embedding a𝑚

𝑖
without missing the encoding from Eq. (3). We also trained the
model without the contrastive loss from Eq. (16) and the second
term of the score function from Eq. (17) (a variant of the Order-
embedding model). The results in Table 3 indicate that removing
any single component leads to decreased performance, highlight-
ing the importance of considering missing numerical values, incor-
porating contrastive loss, and regularizing the score function in
numerical reasoning tasks. In particular, the significant decline in
performance when only CL was excluded is due to its association
with Order-embedding. Although Order-embedding has the repre-
sentation power to present the order of each numerical attribute,
our model does not learn well when Order-embedding is solely ap-
plied because of the sparse observation of attributes and numerical
relations. It can be inferred that CL helps alleviate the problem of
Order-embedding under high sparsity.

6.2.2 Analysis of RA Encoder. As previously stated, the central
concept of our RA Encoder is to extract relevant numeric informa-
tion for each relation. The attention matrix, obtained using Eq. (6),
is visualized in Figure 2. The heatmap highlights two important
observations. Firstly, the numeric comparison relations (bottom
three rows) correspond to the relevant numeric attributes. For in-
stance, the commute_time_comp relation has the highest relevance
score for the commute_time attribute. Secondly, structural relations
(top three rows) also benefit from numeric attributes. For example,

Table 3: Ablation study of RAKGE on US-cities dataset. ‘ME’
stands for Missing Encoding, ‘CL’ stands for Contrastive
Learning, and ‘OE’ stands for Order-embedding.

ME CL OE H@1 H@3 H@10 MR MRR
⃝ ⃝ ⃝ 0.388 0.468 0.556 170 0.447
× ⃝ ⃝ 0.288 0.388 0.488 219 0.359
⃝ × ⃝ 0.036 0.074 0.132 522 0.071
⃝ ⃝ × 0.324 0.453 0.578 135 0.413
⃝ × × 0.365 0.440 0.530 152 0.422

when predicting the located in state relation, the RA Encoder places
more importance on the latitude, population, and density attributes
than on the others.

6.2.3 Analysis of Contrastive Learning. We proposed a new con-
trastive learning method for handling the continuous nature of
numeric attributes. To demonstrate how our generator produces
truly hard positive and negative samples, we replaced our attribute-
enriched vector eattr,i in Eq. (11) with standard entity embeddings
learned by Order-embedding in Eq. (2). To accumulate a large num-
ber of tail samples, Eqs. (12) - (15) were repeated 200 times using a
given head entity with height = 170 cm and the relation taller_than.
These samples were visualized in 2D space using T-SNE [23], as
shown in Figure 3. It can be seen that the samples generated by
head mixing are well distributed in the space between the posi-
tive/negative entities and the head without mixing with each other.
The detailed procedure for the sample generation is described in
Appendices B and C.2.
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Figure 2: Relevance score of each numeric attribute for each
relation on the US-Cities dataset. The lighter the color, the
higher the relevance score. ‘comp’ stands for comparison.

Table 4: Ablation study of RAKGE on Credit dataset

Model H@1 H@3 H@10 MR MRR
RAKGE+TransE 0.658 0.731 0.823 12 0.712
RAKGE+ConvE 0.182 0.264 0.361 104 0.247
RAKGE+ComplEx 0.000 0.225 0.397 79 0.146
RAKGE+TuckER 0.000 0.347 0.548 35 0.209

6.2.4 Analysis of Score Function. We utilized TransE in our score
function owing to its compatibility with Order-embedding and its
ability to handle asymmetric relations. By contrast, ConvE uses
convolutional layers, which can disrupt the preservation of the or-
der scheme in entity embeddings. Similarly, ComplEx and TuckER,
both of which depend on cosine similarity as their distance metric,
struggle to retain the ordering information.

Table 4 supports the effectiveness of TransE compared with the
other score functions on the Credit dataset. Our RAKGE+TransE
model significantly outperforms the RAKGE+ConvE model, ex-
hibiting enhancements of 261.5 % in 𝐻𝑖𝑡𝑠@1 and 188.3 % in𝑀𝑅𝑅.
The choice of TransE is grounded in its proficiency in managing
asymmetric relations and its affinity with the Order-embedding
loss term. The proposed contrastive learning method was applied
equally to all models.

6.2.5 Influence of Sparsity of Attributes. Through our RA Encoder
and contrastive learning, we expect RAKGE to be robust even when
numerical attributes are sparsely observed. Figure 4 shows the
performance trend of KGE models with numerical attributes at
varying densities. The performance of our RAKGE model slightly
decreases with a decrease in density; however, it maintains its
leading position in terms of performance. In contrast, LiteralE and
MT-KGNN demonstrate insignificant change, even in the absence
of numerical attributes. This observation suggests that LiteralE
relies mainly on structural information and is less effective for
numerical comparisons, whereas our RAKGE method effectively
handles numerical values.

Figure 3: Visualization of positive/negative samples gener-
ated by our contrastive learning. The notation ‘HM’ stands
for head mixing, corresponding to Eqs. (14) - (15).

Figure 4: Performance change in Hits@1 and MRR with re-
spect to the density of numeric attributes is shown for the
Spotify dataset. A density of 100%means that all entities have
numeric values for every attribute field, while a density of
0% means that none of the entities have numeric values.

7 CONCLUSION
In this paper, we proposed RAKGE, which enhances numerical
reasoning through relation-aware attribute representation learning,
and a new contrastive learning method. Our key insight is that by
exploiting relational information in both attribute representation
learning and the scoring function, numerical reasoning is signif-
icantly enhanced across various datasets. The proposed method
outperformed the best competitor (R-GCN on Spotify) by up to
65.1% in 𝐻𝑖𝑡𝑠@1 and 52.6% in𝑀𝑅𝑅. Furthermore, RAKGE is more
robust than other models under various attribute sparsity condi-
tions.
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A EXPERIMENTAL SETTINGS
The following subsections describe the data statistics, hyperparam-
eters, experimental setup, and additional experimental results.

A.1 Dataset Statistics
To evaluate the performance of RAKGE in this paper, we used the
US-Cities, Spotify, and Credit datasets, and detailed information
about the datasets is described in Table 5 below.

Table 5: Data statistics

Dataset US-Cities Spotify Credit

# of Triplets

All 60,231,493 6,098,734 4,712,388
Train 86,124 30,255 52,419
Valid 30,072,684 3,034,245 2,329,984
Test 30,072,685 3,034,245 2,329,985

# of Entities 9,296 3,374 1,790
# of Non-numeric Relations 3 3 3
# of Numeric Relations 3 3 3

# of Attributes 65 10 5
# of Numerical Triplets 465,505 20,170 8,915

A.2 Hyperparameters
To ensure the reproducibility of our model, we list the hyperparam-
eters used in RAKGE in Table 6. These parameters were selected
based on the validation splits across all three datasets: US-Cities,
Spotify, and Credit.

Table 6: Hyperparameters to reproduce our results.

Hyperparameter Search range Selected value
Entity/Relation Dimension 𝑑𝑒𝑚𝑏 [50, 100, 200] 200

Attribute Dimension 𝑑𝑎𝑡𝑡 [50, 100, 200] 200
# of Attention Heads 𝐾 [1,2,4,5] 5
Score Function Bias 𝜖 [1.0, 3.0, 9.0] 9.0

Numerical Reasoning Weight 𝛿 [0, 0.25, 0.5, 0.75] 0.25
CL Loss Coefficient _ [0, 0.25, 0.5, 0.75] 0.25

Dropout Rate [0.1,0.3,0.5, 0.7, 0.9] 0.7
Learning Rate [0.0001, 0.005, 0.001] 0.001
Batch Size [128, 256, 512, 1024] 256

A.3 Experimental Setup
For all Euclidean KGEs, including RAKGE, we used the improved
learning methods based on dropout, batch normalization, and lin-
ear transformation proposed alongside LTE [37]4 for evaluation.
The hyperparameters of the other models followed the settings of
the proposed models. The evaluation metrics were 𝐻𝑖𝑡𝑠@1(𝐻@1),
𝐻𝑖𝑡𝑠@3(𝐻@3), 𝐻𝑖𝑡𝑠@10(𝐻@10), Mean Rank (𝑀𝑅), and Mean Re-
ciprocal Rank (𝑀𝑅𝑅). Higher 𝐻𝑖𝑡𝑠@𝐾 and 𝑀𝑅𝑅 values indicate
a better performance, whereas lower MR values imply a better
performance.
4https://github.com/MIRALab-USTC/GCN4KGC

B LEARNING PROCEDURE OF RAKGE
Algorithm 1 describes the overall learning procedure of RAKGE.
For the number of epochs, we first initialized the loss. For each
triple in the training set, as described in Line 5, we obtained the
head embedding eattr,h using the RA Encoder (Section 4.1). Additional
steps for contrastive learning (Section 4.2) are required if 𝑟 is a
comparison relation and (ℎ, 𝑟, 𝑡) is in the knowledge graph triple
set. Through Lines 7-8, we acquire positive and negative embed-
dings of the head entity and relation via the RA Encoder, H P

𝑟 and
HN

𝑟 , respectively. Lines 9-10 illustrate the mixing process used to
generate hard positive and negative embeddings. The contrastive
loss is then calculated using Eq. (16), and our loss is updated (Line
11). Finally, the cross-entropy loss is added according to Eq. (18),
and \ is updated.

Algorithm 1 Training RAKGE

1: Input: Training set T = G ∪ G− ; Positive sample set for
P[𝑒, 𝑟 ] = {𝑖 | (𝑒, 𝑟, 𝑖) ∈ G}; Negative sample set N[𝑒, 𝑟 ] =

{ 𝑗 | ( 𝑗, 𝑟 , 𝑒) ∈ G}; Initialized RA Encoder 𝑅𝐴_𝐸𝑛𝑐𝑜𝑑𝑒𝑟 ; Com-
parison relation set R𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 ; Coefficient for contrastive
loss _; # of epochs for training 𝑒𝑝𝑜𝑐ℎ𝑠

2: for 1, 2, · · · , 𝑒𝑝𝑜𝑐ℎ𝑠 do
3: Initialize loss 𝐿 = 0
4: for each (ℎ, 𝑟, 𝑡) ∈ T do
5: Acquire the head embedding eattr,h = 𝑅𝐴_𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (ℎ, 𝑟 )
6: if 𝑟 ∈ R𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 and (ℎ, 𝑟, 𝑡) ∈ G then
7: Get H P

𝑟 = {𝑅𝐴_𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (𝑝, 𝑟 ) | 𝑝 ∈ P[ℎ, 𝑟 ]}
8: Get HN

𝑟 = {𝑅𝐴_𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (𝑛, 𝑟 ) | 𝑛 ∈ N [ℎ, 𝑟 ]}
9: Generate a hard positive e+mix with H P

𝑟 and eattr,h via
Eqs. (12), (14)

10: Generate a hard negative e−mix with HN
𝑟 and eattr,h via

Eqs. (13), (15)
11: 𝐿 = 𝐿 + _𝐿𝐶𝐿 , (𝐿𝐶𝐿 via Eq. (16))
12: end if
13: 𝐿 = 𝐿 + 𝐿𝐵𝐶𝐸 , (𝐿𝐵𝐶𝐸 via Eq. (18))
14: end for
15: Update \ via ∇\𝐿
16: end for

C ADDITIONAL EXPERIMENTAL RESULTS
C.1 Feasibility Test
To verify our conclusion further, we conducted a feasibility test
to investigate whether RAKGE learns numerical values based on
their magnitude or existence. The numeric values in the original
dataset were transformed into binary values, indicating the pres-
ence of numerical attributes. If the value existed, it was assigned a
value of 1; otherwise, a value of 0 was assigned. The results of the
feasibility test on the Spotify dataset are reported in Table 7. The
best competitor of our model, LiteralE [15], showed no significant
change, regardless of whether binary or numerical values were
used. However, the performance of RAKGE decreased by 17.6% and
16.8% in 𝐻𝑖𝑡𝑠@1 and𝑀𝑅𝑅, respectively. This result suggests that
our method performs numerical comparisons, whereas LiteralE
uses only numerical values as indicators of their existence.
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Figure 5: Visualization of how true hard positive/hard samples are generated through our contrastive learning. ‘HM’ stands
for head mixing, corresponding to Eqs. (14) and (15). The leftmost figure shows the head and positive/negative tails given by
training data. The middle figure presents samples generated only by Eqs. (12) - (13), and the rightmost figure shows the final
positive/negative samples.

Table 8: Case study on US-Cities dataset

Relation Important Attributes (Attention Scores)
commute_time_comp income (0.106), age (0.038), male population (0.020)

ranking_comp hispanic (0.168), density (0.096), longitude (0.095)
disabled_comp income (0.201), divorced (0.067), widowed (0.043)

Table 7: Feasiblity test of LiteralE and RAKGE on Spotify
dataset

Model Setting H@1 H@3 H@10 MR MRR

LiteralE Binary 0.263 0.362 0.480 79 0.339
Numeric 0.266 0.377 0.494 74 0.347

RAKGE Binary 0.394 0.479 0.571 62 0.459
Numeric 0.478 0.592 0.687 44 0.552

C.2 Visualization
To demonstrate how our generator produces hard positive and
negative samples, we replaced our attribute-enriched vector eattr,i in
Eq. (11) with the standard entity embeddings learned by the order-
embedding in Eq. (2). To obtain numerous tail samples, Eqs. (12) -
(15) were repeated 200 times using a given head entity with height =
170 cm and the relation taller_than. The step-by-step generation of
samples through our contrastive learning is illustrated in Figure 5.
All the generated positive and negative samples show a tendency to
be close to the head entity; however, they do not cross the decision
boundary.

C.3 Qualitative Analysis
The RA Encoder in our model was designed to obtain more ro-
bust attribute representations when the attributes were sparsely
observed. Therefore, we investigated how well other significant
attributes contributed to the inference of a derived relation when

the corresponding numeric attribute is missing. Table 8 presents
the attention scores of the RA Encoder for the top three most sig-
nificant numeric attributes used to infer the comparison relations
in the US-Cities dataset. We observed that the comparison relation
places importance on other appropriate attributes, such as income,
instead of commute_time.

C.4 Evaluation on FB15k-237 Dataset
In standard link prediction tasks for knowledge graph completion,
the FB15k-237 dataset [21] is often used. As the datasets used in
our study were newly produced for large-scale analysis, we also
conducted an additional experiment using FB15k-237. As shown in
Table 9, RAKGE outperformed the other models.

Table 9: Link prediction results on FB15k-237 [21]. The re-
sults marked with★ are taken from [37], and those with † are
taken from [15]. The results of other baseline models were
obtained from their original paper. Bold scores represent the
best results, and underlined scores represent the second-best
results.

Model H@1 H@3 H@10 MR MRR
TransE ★ [5] 0.240 0.368 0.516 182 0.332

DistMult ★ [12] 0.202 0.306 0.433 392 0.279
ConvE ★ [11] 0.232 0.351 0.492 276 0.319
TuckER [4] 0.266 0.394 0.544 - 0.358
MuRP [3] 0.245 0.370 0.521 - 0.336
R-GCN [17] 0.153 0.258 0.414 - 0.248
LiteralE [15] 0.232 0.348 0.483 280 0.317
KBLRN † [13] 0.215 0.333 0.468 358 0.301

MT-KGNN † [20] 0.204 0.312 0.445 532 0.285
RAKGE 0.282 0.402 0.531 321 0.366
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