
 

 
 

 

Abstract— Home-service robots are expected to perform 

a wide range of tasks commonly encountered in a 

household environment. For autonomous operations ro-

bots should be able to plan their actions to carry out these 

tasks in advance and they should at least have the ability 

to plan for additional tasks during their operation. Be-

cause of the variability and uncertainty in the environ-

ment, it is best to endow robots with a learning-based 

task planning capability that rests on Human-Robot In-

teraction (HRI). We take a case-based reasoning (CBR) 

approach to home-service-robot learning and incorpo-

rate the cognitive HRI paradigm that includes four cog-

nitive models (needs, task, interaction, and user model) 

for case adaptations to the given situation. Given a new 

command from user, a robot finds the closest task case 

from already existing tasks to start with a plan and 

modifies it (i.e. action sequences) to adapt to the given 

situation based on the cognitive models. In order to 

promote the reusability and flexibility of task cases used 

in our CBR approach, a Robot Task Description Lan-

guage (RTDL) is designed to represent tasks using an 

Atomic Action Taxonomy [1]. The proposed approach is 

applied to a “Bring me a coke” scenario and implemented 

in our robot system called IDRO. 

I. INTRODUCTION 

Robots are expected to become a close friend or a helper to 

make people’s lives more comfortable and enjoyable. For 

such a role, a home-service robot should have basic capa-

bilities: bringing something (a book, cup, coke, etc), vac-

uuming, guiding a person to a place, and so on. That is, robots 

are expected to perform a variety of tasks consisting of ac-

tions and sub-tasks. However, predicting and representing in 

advance all tasks to be executed is almost impossible. Storing 

all enumerated tasks is not realistic because of the need for 

real-time control of robotic systems.  

The efforts for designing an intelligent home-service robot 

have led to the development of humanoid robots like ASIMO 

[2]. This is because household environments are designed for 

comfort and convenience of human beings with an average 

physique. However, currently only simple household services 

such as carrying objects, vacuuming, and operating house-

hold appliances are possible in a carefully controlled envi-

ronment.  

Robots are likely to become a ubiquitous part of our daily 

life, similar to technologies in communication, automobiles, 

and transportation. In that sense, in order to be ubiquitous, 

robots must function reasonably and autonomously under a 

variety of conditions, while adapting to environmental 

changes and continually pursuing their goals. For this 

adaptability, we need to minimize the planning time by using 

prior knowledge about and experience in tasks.  Applying 

classical planning methodologies [3], without proper prior 

knowledge about household environments, is too complex to 

make a good plan. The case-based reasoning (CBR) approach 

is a natural choice, especially given the high complexity of 

the plans to be made for household environments.  

The existing CBR-based work mostly concentrates on re-

trieval processes [4, 5]. In short, finding the most relevant 

prior case is the main job. Retrieving one relevant case from 

the case-base is not sufficient; there is a need to adapt it to the 

given context [5-7]. Although performing a meaningful ad-

aptation requires rich context information, it is not sufficient, 

either. We need cognitive models for needs, tasks, interac-

tions, and users that are understood by both the human and the 

robot in order to handle the ambiguities arisen from incom-

plete information.  

Prior to applying the CBR approach to the robot’s task 

planning, a well-designed case structure for the robot’s task is 

required for planning a task, storing a number of cases, 

changing sequences of a task, and issuing a final action se-

quence.  For this requirement, we have carefully designed a 

robot’s task case structure based on Robot Task Description 

Language (RTDL). Based on the RTDL, our cognitive CBR 

framework manages the given task by undergoing appropriate 

adaptations with the cognitive models. 

The rest of this paper is organized as follows. Section II 

describes the existing approaches about CBR, robot lan-

guages, the robot task with atomic action, and the robot’s task 

planning. Section III illustrates how a robot’s task case can be 

represented using RTDL structure. In Section IV, the derived 

CBR scheme is explained with the used cognitive models in 

retrieval and adaptation aspects. A system implementation 

and the experiment of detailed adaptation procedures with 

cognitive considerations are described in Section V. Finally, 

conclusion is appeared in Section VI. 

II. RELATED WORK 

A. Case-Based Reasoning (CBR) 

The basic idea of CBR [4] is to solve new problems by 

comparing them with problems already solved; that is to say, 

CBR is a process that uses similar solution that were already 

solved previously to solve the current problem. Although it 

can be said that CBR system has 4 steps (retrieve, reuse, re-
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vise, and retain) [4, 6], the critical step is to find and retrieve a 

relevant case from the Case-Base. Most CBR Systems were 

developed for retrieval of the most relevant cases. Repre-

sentative systems are JULIA (meals), KRITIK (devices), and 

CADRE (building). However, to make the CBR Systems 

more intelligent, adaptation process should be included in its 

implementation. Because a stored case contains a solution, it 

can be adapted by modifying sequences or parameters of the 

old problem to suit the new situation resulting in a proposed 

solution. After the solution is tested, it can be added to the 

Case-Base if found successful. Adaptation (including plan-

ning) procedures and their policies were mentioned in [4-6]; 

e.g. CHEF (recipes) and SIMMS (robot control). In addition, 

knowledge acquisition is easier in CBR because of the 

granularity of the knowledge. To maximize the utilization of 

the case-base, hybrid approaches that combine the case-base 

retrieval and rule-based adaptation mechanism is recom-

mendable. The hybrid method can bring out several benefits 

in some fields like adaptation speed and accuracy [7]  

B. Robot Language 

A number of task-level programming languages have been 

developed for robots, such as Task Definition Language 

(TDL) [9], Robot Sensor Language (RSL) [10], Robotic 

Markup Language (RoboML) [11], etc. While those lan-

guages are powerful and convenient for expressing the in-

formation related to their respective applications, a simulta-

neous utilization of a robot programming language in a single 

application, they could create significant difficulty when ap-

plied to our CBR approach. For example, the RoboML [11] is 

a markup language for HRI, and its capability is limited as 

enabling navigation by describing sender, receiver, and ro-

bot’s wheel rpm. Hence, a new XML-based markup language, 

which can flexibly support various tasks of home-service 

robot in atomic action level, is defined in this paper. 

C. The Robot’s Task and Atomic Actions 

For a robot, generally speaking, a task can be said as a 

sequence of detailed actions to be done or procedural be-

haviors for completing a goal by satisfying a human’s com-

mand or react automatically coping with the current condi-

tions. However, the robot’s task that human expects can be 

somewhat different depending on the situation faced, hu-

man’s intention, and its domain. If the coverage has narrowed 

down within home-service domain, we can enumerate house 

chores, such as bring something, opening door, vacuuming 

some place, and guiding guest.  

However, those tasks need to be arranged into more 

manageable units that can be handled in the robot’s task 

planning. Kim et al. [1] defined and classified atomic actions 

based on the kind of sensor algorithms used during atomic 

execution in respect of vision verification, sound verification, 

and force/tactile verification. Based on that, each task in a set 

of relatively complex tasks for home-service robots was de-

composed into a set of atomic actions that can be executed by 

the robot without further calculations or interpretations. 

Hence, the atomic actions will be used as basic units in our 

Cognitive CBR approach. 

D. The Robot’s Task Planning 

There has been a variety of research to accomplish several 

home-service robot tasks in the robot’s task planning and its 

taxonomy until now [14-18]. In order to make a complete 

action sequence for a task, there is a need to combine already 

mentioned tasks such as motion planning which includes 

grasping [19-21], navigation that contains path-planning and 

movement [22-24], vision recognition, voice recognition, and 

so on.  

In this line of context, we could develop a firm belief that 

the robot’s task planning should be organized under the 

consideration of taxonomy about vision, sound, and force & 

tactile verification. Each of above task planning approaches 

may complete for themselves, however, due to the limited 

coverage, there are some difficulties to accomplish a task by 

integrating with each other intelligently in home-service en-

vironment. Although hierarchical task network planning [25] 

has very similar features compared to our approach in terms 

of hierarchical task decomposition and sub-task search sat-

isfying the given conditions, there exists clear differences; 

reusing user’s prior experience with the given context in-

formation, updating the case-base with newly user-driven 

cases (or sub-tasks), task structure and its flexibility & ex-

tensibility. 

III. ROBOT TASK REPRESENTATION 

A. Robot Task Description Language (RTDL) 

We have deigned Robot Task Description Language 

(RTDL) for a robot’s task structure to be used in our 

framework. Although the task structure is a 3-level hierarchy 

(case (or task) � sub-tasks � atomic actions) as shown Fig. 1, 

sub-task (or atomic action) per se can be a task case de-

pending on situations. Thus, multi-level cases can exist in our 

robot task case database. We assume that all objects are al-

ready known to the robot and that every atomic action is 

complete by itself. Additionally, perception actions run con-

stantly to check the completion status of each step, so they 

can run in parallel to the effector actions, and their 

*COMPLETION* or *FAILURE* will decide on the next 

action to be performed by the robot.  

Fig. 1 represents a tree model of our RTDL in XML 

schema level. Basically, a task can be divided into a number 

of sub-tasks for performing a final goal (i.e. user-command’s 

ultimate purpose), and each sub-task is composed of several 

atomic actions for fulfilling a sub-goal.  

A task case can have a unique ID (Case ID) as an attribute. 

In addition, a case can have CTASKCATEGORY (Case’s 

category), CHANDLINGOBJ ECT (which object is handled), 

COBJECTSTATE (state of the object), CONTAINER (what 

container is need to handle the object), CONTEXTINFORM 

ATION (what are environmental constraints surrounding the 

robot), and NUMST (total number of sub-tasks) as the 

building blocks. In term of sub-task, it has ID (Sub-task Id) 
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and NAME (Sub-task name). The sub-task can maintain 

STARGET (what is target location of this sub-task), 

SHOBJECT (what is the object that this sub-task handles), 

NUMAT (total number of atomic actions which are used in 

this sub-task), and atomic actions as elements. The sub-task 

has several atomic actions to fulfill its own sub-goal. Each 

atomic action has its own ID, name, and value, but the value 

can be adopted considering the surrounding context.  

 

TASK: A robot task is defined to be a specific piece of 

work done, whether requested by a human or generated by the 

robot itself. The number of tasks that robots can do will in-

crease as technologies developed, making it a moving target 

to define prototypical tasks. For example, Bring me an object, 

Throw an object into a wastebasket and Vacuuming the floor 

are examples of the robot task. In Fig. 1, *CASE* is consid-

ered as a robot task. 

 

Sub-task: All robot tasks are simple for humans but are 

complex multi-step operations for robots. A sub-task is a 

quite natural procedural process for a human being rather 

than a robot. It is of such granularity as Find_object, 

Grasp_obect, Handover_object, Move_to_location, and so 

on. They usually involve a single object or location parameter, 

and their execution requires coordination of sensing, plan-

ning and action modules of the robotic system. Table 1 shows 

the number of sub-tasks required for each of the several 

household tasks. 

 

Atomic Action: We have defined 45 atomic actions that 

are required to complete roughly 10 household tasks [Table 

2]. They are organized and classified in respect of vision, 

sound, and force/tactile verification based on Kim et al.’s 

work [1]. Categorizations such as movement, grasping, etc 

are done for easy understanding about each atomic action. 

The number of atomic actions can be increased according to 

the future needs and the increase of available tasks.  

 

 

Table 1. List of Sub-tasks 

 

Sub-tasks Description 

Find_object Find the location of an object 

Move_to_location Navigate to the location 

Grasp_object Grasp an object 

Throw_object Release an object while moving arm 

Open_door Open a door 

Handover_object Hand over an object 

Wait Wait for a moment 

Get_command 

(from user) 
Get a command from the user 

Push_object Push an object 

Pull_object Pull an object 

.. .. 

 

Table 2.  Atomic actions for home-service robots 

 

Category Atomic Actions 

Movement 

GoToward, InvokePathPlanner,  

Navigation, GoBetween, GoRight, GoLeft, 

GoFoward, GoBackward, Stop, Wait,  

GoAlong, … 

Grasping 
InvokeArmMotionPlanner, MoveArm, 

CalculateGrapType, HandOver, Grasp, … 

User 

Interaction 

GetVoiceCommandFromUser, 

GetTextCommandFromUser, 

PromptToUserVoice, … 

Vision 

Capability 

CheckQuantityWater, CheckStability, 

FindLocationFromVision, 

FindLocationFromKB, … 

B. Task Representation using Sub-tasks and Atomic Ac-

tions 

 
 

Fig. 2 Example: “Brine me a coke” 

 

Fig. 2 shows the flow chart for the “bring me a coke” task 

in detail. It has six sub-tasks. The solid arrows denote the 

normal flow of operations while the dashed arrows show 

routes for possible error handling and recovery. This flow 

chart in fact represents a piece of knowledge in our robot task 

case database, and it can be hard-coded initially in the robot 

 
 

Fig. 1 A Tree Representation of RTDL 
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or may be taught by HRI on the fly.  

The six phases are designed for the task, but there can be 

variations according to the situations. For example, the 

number of sub-tasks can be increased or decreased to satisfy 

the problem requirement and the context conditions. That is, 

adding a sub-task (or atomic action) and undoing the given 

sub-task (or atomic action) for error-recovery can happen. In 

other words, two instances of the sub-task “Move_to_loca-

tion” do not always entail the same atomic actions as its 

members. Even the number of atomic actions can be different, 

depending on the needs (e.g. avoiding unexpected obstacle or 

emergency)  

IV. CBR APPROACH FOR THE COGNITIVE ROBOT TASK 

PLANNING 

A. Overview 

 
 

Fig. 3 Overall Architecture for our CBR Approach 

 

In Fig. 3, the Robot Task Manager (RTM) analyzes various 

attributes of the given task and searches for similar cases by 

exploring Robot Task Case Database (RTCD). If there exists 

a matching task with enough similarity to the given task, the 

pre-planned action sequence of the matching task can be used 

to carry out the given task after some modifications. If there is 

no similar task, the robot asks the user to demonstrate how to 

perform the task (using text input at present) and stores the 

action sequence taught by the user. However, this is the worst 

case example. We assume that RTCD manages enough 

number of cases that can cover user’s command in a house-

hold environment because we already manually edited sev-

eral task cases for each of different task goals. Our RTM can 

start with at least one relevant task case retrieved from the 

RTCD.  

In addition, the RTM controls the flow of task sequences 

by observing the completion of a sub-task (or an atomic ac-

tion) and external sensory information. Although the RTM 

initiates the first action from the retrieved task case, it un-

dergoes appropriate adaptations based on the four cognitive 

models as described in Section 4.3. Actually, it resolves 

ambiguities using the related rules in the JESS [27] with re-

gard to the suitability of the given sub-task (or atomic action) 

in the given context information. If the newly adapted case 

has enough novelty with respect to all the existing robot task 

cases, it is added to the RTCD.  

B. Retrieval and Similarity Measures 

The case retrieval, a main part of our framework, assesses 

the similarity of a given query to the cases in the RTCD 

 

 
 

Fig. 4 Example of a Simple Similarity Comparison 

 

Fig. 4 shows a matching process between the target 

problem and a case, which is chosen from the Case DB. It 

finds the closest match among the cases in the Case DB. Each 

case consists of a predefined set of features that are defined 

by a name and a data type, which may be any of the string, 

float, integer, and Boolean types. The closest match is cal-

culated by using the weighted Euclid distance like the Py-

thagoras theorem in n-dimensions. That is based on the 

k-nearest neighbor (k-NN) method which assumes all in-

stances that correspond to points in the n-dimensional space 

[28, 29]. The distance between the search and a case is a 

floating point number between 0 and 1 and is calculated as 

follows: 

2 2 2

1 1 2 2_ n ncase dist weight dist weight dist weight dist= × + × + ×L  

 

For numerical attributes, we simply calculate the differ-

ence between the query value and the case value and nor-

malize the result to the interval. In case of string data types 

(e.g. target, location, object, etc), a synonym word list and 

canonicalization are used to help in dealing with different 

notations that have similar meanings. Additionally, time 

representation can be transformed into arithmetically com-

putable form for the distance measurement. The 

weights iw can be assigned heuristically by a domain expert. 

C. Cognitive Models for Task Adaptations 

Performing a meaningful adaptation can be done by using 

an appropriate reasoning procedure [4, 26] on the basis of 

rich context information. However, to manage the efficient 

and flexible task planning, a set of cognitive models need to 

be shared or possessed by the human and the robot. The most 

essential models are those of the task and the interaction [30].  

In the cognitive models, task characteristics (e.g., task 

category, sub-task, atomic action, target, object, etc), innate 

capabilities of the robot (e.g., wheel-based movement, 

grasping capability with two grippers, distance measurement 

with 12 ultrasonic sensors, etc), and the context information 

(location, user, time, etc) are considered for the robot to ap-

propriately deal with the communication issues and task se-

quence adaptations while managing the interaction process in 

a friendly manner. Especially, task sequence substitution and 
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parameter adaptation have been performed to handle ambi-

guities arisen from incomplete information that is allowed to 

the robot in natural but limited communication. 

 

Shared

Work Domain /
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Human Robot

User

Model

Shared

Work Domain /

Needs Model

Task Model

Interaction Model

Human Robot

User

Model

 
 

Fig. 5 A Model of Cognitive Interaction [30] 

 

Table 3. Roles of Cognitive Models 

 

Cognitive 

Models 
Roles 

Task 

Model 

(TM) 

It generates the details of task procedures and 

modifies them according to the ongoing 

communication with the human. A task pro-

cedure can be modified by the known pref-

erence of the user and disambiguated infor-

mation due to communication or situational 

knowledge acquisition while conducting the 

task. 

Interaction 

Model 

(IM) 

Concerns in issuing of questions and sugges-

tions to the user. It is also used to build an-

ticipation for the possible communication 

initiated by the human 

Needs 

Model 

(NM) 

The needs model contains the conditions and 

requirements that determine the boundaries of 

the robot’s behavior that are not specified 

explicitly in the task model. It may represent 

commonsense restrictions or the robot’s 

limitation or safety-related constraints. 

User 

Model 

(UM) 

Based on the information of the user’s pref-

erence, it could produce adaptive behavior for 

individual users. 

V. IMPLEMENTATION 

In our implementation, to imitate cognitive models’ func-

tions, we use the JESS [27], a rule engine. In addition, to 

perform and test appropriate adaptation processes about the 

“Bring me a coke” task, we manually crafted the required task 

cases and cognitive rules. For realistic testing, our approach 

has been embedded in our robot system called IDRO. Fig. 6 

and Fig. 7 show detailed steps needed during the task exe-

cution and their adaptations. From the start, the task model 

engages the whole task processes. Although the robot starts 

with a retrieved case, it can ask the user for a clear preference 

on the coke type based on the interaction model. In addition, 

if the robot fails to grasp the coke (or navigation to some-

thing), it modifies the action sequences upon the task model. 

Finally, he selects a handover pattern (e.g. “politely” or 

“normally”) because the user model participates. Those 

situational adaptations come from the communications 

 
 

Fig. 6 Execution Flow for “Bring me a coke” 

 

 
 

Fig. 7 Step-by-step explanations: “Bring me a coke” 
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among the cognitive models (task, interaction, user, and 

needs model). 

VI. CONCLUSION  

This paper presents a cognitive CBR framework towards a 

task planning of home-service robots. Because the knowledge 

for the robot’s task planning is extremely incomplete and 

dynamic, it is very difficult to formalize general rules to solve 

problems (i.e. planning tasks for a robot) automatically. 

However, in general, the CBR approach can integrate 

knowledge acquisition, reasoning, storage and learning in one 

platform. Hence, a system using CBR approach can add 

newly derived cases without changing the fundamental sys-

tem structure, and the newly derived ones can be inserted into 

the case base for future usage. In that sense, we designed a 

cognitive CBR based on the four cognitive models to resolve 

ambiguities arisen during action execution. Additionally, our 

Robot Task Description Language (RTDL) – a new task 

structure for home-service robot – is designed to be used 

efficiently in planning a task, storing a number of cases, and 

changing action sequences for our Cognitive CBR framework. 

The framework and RTDL support interactions with the user 

to acquire insufficient information to perform a given task 

completely by taking into consideration the context infor-

mation and the given task’s characteristics.  

To test our system’s applicability, we have implemented 

the “Bring me a coke” scenario based on our cognitive CBR 

approach, and found that it helps HRI-based task planning in 

terms of ambiguity resolution and subsequently required ac-

tion sequence adaptations. Although a home-service task, 

which is the focus of this paper, could cover very limited 

number of services compared to a number of household 

chores that are done by housewives daily, we believe that the 

cognitive CBR approach to the robot’s task planning for 

home-service above can be used very substantially, especially, 

when reusing new tasks and resolving ambiguities for the task 

completion. 
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