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ABSTRACT

Node representation learning is a technique to encode a network
into a low-dimensional vector space while preserving the inher-
ent relational properties in an embedding space. This approach
is widely used in downstream tasks such as node classification,
graph classification, and link prediction. Despite recent success
in node-representation learning, it remains challenging to explain
learned representations. In particular, many existing methods have
focused less on unsupervised node representation learning meth-
ods (e.g., node2vec [3]); this makes it difficult to determine which
subgraph contributes the most to the embedding of each node. In
this paper, we propose a reinforcement-learning-based post-hoc
and local explanation method that can identify the subgraph as
an explanation of a target node. Compared to existing works, the
explanation of our method has a greater impact on local neighbors
when we measure the number of top-k nearest neighbors in the
embedding space that are changed after perturbing the found sub-
graph and re-learning the node2vec method. Experiments using
two real-world networks show that our proposed method generates
more important subgraphs than the existing baselines.
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1 INTRODUCTION

Machine learning with graphs has an important role in graph clas-
sification, node prediction, and link prediction tasks, and its im-
portance is growing in applications such as vast sensor networks
and social networks. For example, supervised node representation
learning methods (e.g., [6, 22]) have been proposed, and research
shows state-of-the-art performance in many supervised learning
tasks. In addition, there have been many advances in the field of
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unsupervised node representation learning (e.g., [3, 13, 18, 19]).
Unsupervised node representation learning finds low-dimensional
representations of nodes in graphs so that it can be applied to
various downstream tasks. An example of an unsupervised node
representation learning algorithm is node2vec [3], which learns
the embedding vectors of each node based on random walks; it is
available to project nodes in Euclidean space by placing nodes that
have similar neighbors close to each other.

Despite the increasing application of node representation learn-
ing models, it is still difficult to understand how the models de-
rive the representations because of the characteristics of graph-
structured data and the use of complex neural networks. Accord-
ingly, there is a growing need to explain node representation learn-
ing models. Recently, explainable AI (XAI) algorithms for super-
vised learning with GNNs were proposed in [23, 24, 26]. In partic-
ular, in XGNN [24] and SubgraphX [26], reinforcement learning
was used to generate a subgraph to explain the predictive models.
However, they are still limited to supervised node representation
models.

There are a few methods for unsupervised node representation
learning models that explain how the models derive the results. Pre-
viously, to interpret the results, we often leverage predictive models
with the labels available [3] or related taxonomy [8] to measure
the quality of the learned representations. However, the approach
is only limited to the specific downstream tasks, rather than the
node representations themselves. To increase the trustworthiness
of the results from unsupervised node representation learning, it is
necessary to directly consider the underlying node representations.

In this paper, we propose a new method to provide post-hoc
and local explanations for node representations of node2vec [3],
which is a widely used unsupervised node representation learning
model. We first define the notion of an important subgraph as an
explanation of the target node. It can be measured by calculating
the importance score of the subgraph using a perturbation method.
By perturbating the edges of the input graph, which are equivalent
to those in the candidate subgraph, we obtain a perturbed graph
and re-learn the embedding vectors with the perturbed graph. To
obtain the importance score of the subgraph, we measure how much
two embedding vectors of the target node (i.e., with or without
perturbation) are locally different. However, there exist numerous
possibilities of subgraphs around a target node, and it is difficult
to obtain the most important subgraph to the original embedding
efficiently. To address this problem, we utilize the Monte Carlo
tree search (MCTS) in reinforcement learning to search for the
most important subgraph efficiently. In our evaluation with two
real-world graph datasets, the explanation of our proposed method
has a greater impact on local neighbors compared to those of the
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existing baselines. In particular, when we measure the number of
top-k nearest neighbors in the embedding space that are changed
after perturbing the found subgraph and re-learning the node2vec
method, our proposed method changes top-k local neighbors twice
as good as the baselines.

2 RELATED WORK

2.1 Unsupervised node representation learning

Unsupervised node representation learning extracts feature vectors
of nodes without label information, and to achieve this, random
walk-based algorithms, such as DeepWalk [12] and node2vec [3],
are widely used. Random walks are employed to transform graph-
structured data into a sequence of nodes by traveling neighborhoods
with biased or unbiased transition probabilities. In DeepWalk, the
distribution of the transition probability is uniform, leading to the
movement of nodes in an unbiased manner. The method is gen-
eralized in node2vec by varying the transition probability in an
unbiased or biased way using the return parameter ? and in—-out
parameter @. ? and @ can present the different strategies to deter-
mine whether it is closer to BFS or DFS-like exploration. Notably,
DeepWalk can be regarded as a special case of node2vec when
setting ? and @ as 1. When we generate walks from an input graph
using an unbiased or biased random walk procedure, we can treat
these sequence data as one document. Each walk can be the sen-
tence as in the field of natural language processing enabling the
application of these forms of data to skip-gram algorithms [10],
which are commonly used for word embedding tasks. It has shown
enhanced representations to capture the context of related nodes
by optimizing a neighborhood-preserving likelihood objective. As a
result, it is possible to encode the nodes of an input graph into low-
dimensional vectors. These methods have been applied to many
downstream tasks and show considerable success in improving the
performance compared to previous baselines.

2.2 Explainable AI for node representation
learning models

The provision of interpretable explanations is a crucial criterion
when node representation learning models are applied in time-
critical and cost-intensive areas such as biology [11] and medicine
[27]. There is active research on the application of explainable
Al in node representation learning models. XAI models can be
categorized in terms of their scope [2]. First, global XAI models aim
to understand the model from a broad perspective; conversely, local
XAI models are used to explain the predictions of models from the
perspective of specific instances. For example, PGM-Explainer [20]
and XGNN [24] are global models, whereas GNN-explainers [23],
GNN-LRP [14], and SubgraphX [26] are local explanation models,
but those are applicable to supervised node representation models.

In particular, XGNN [24] and SubgraphX [26] provide explana-
tions for GNN-based supervised representation learning models by
finding subgraphs with reinforcement learning. XGNN [24] utilizes
the policy gradient method in the same manner as the REINFORCE
algorithm [21]. It sets the reward function as the probability of a
label class from the predictive model that we want to explain, and
the policy network generates a subgraph with a maximum value of
the label probability, which means that it explains the predictive
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model. SubgraphX exploits the MCTS algorithm, and its action is to
perturb (remove) one node until the minimum number of nodes is
achieved. The value is calculated using the Shapley value [7], which
shows high mutual information to predict the label class. In sum-
mary, various methods have been proposed to explain supervised
node representation learning models; however, they are still limited
in terms of their ability to provide explanations of unsupervised
node representation learning models.

To resolve this limitation, in recent years, the authors of [8]
attempted to interpret the results of network embedding, aiming to
understand the distribution of nodes in the embedding space. They
provide an explanation in the form of a taxonomy, which shows
the inherent structure using hierarchical clustering. Given that it
explains learned node embedding models, it is a global and post-hoc
XAI method; it does not provide node-level local explanations to
the learned network embeddings.

3 OUR PROPOSE METHOD

3.1 Finding the important subgraph for
node-level explanation

In this study, we assume that there are subgraphs that affect the
learned node embedding of a target node at most. For example,
in a citation network, a recent GPT-3 work can be explained by a
subgraph, which is formed among GPT-2 and transformer-based
methods. To obtain the importance scores of the subgraph, most
models such as the GNNExplainer [23] and PGExplainer [9] use
a perturbation method [25]. These perturbation methods usually
measure the change in the prediction probabilities after perturbing
the input graph. Similarly, in this study, we define the notion of
importance in unsupervised representation learning methods us-
ing a perturbation method. For the perturbation, we weaken the
edges of the input graph, which are equivalent to the edges of the
subgraph, as a perturbation to observe the impact of the subgraph.
The procedure is described in Algorithm 1.
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Figure 1: Overall procedure for calculating the importance of the subgraph. To explain the node2vec embedding of node 3
(target node), our proposed method considers multiple candidate subgraphs via the MCTS. Given a subgraph, which is being
considered, the original input graph is perturbed, and embeddings are re-learned on the perturbed graph. In Section 3.4, we
propose a method to alleviate the re-learning burden. We then calculate the importance of the subgraph by measuring the local
change in the embedding vectors and proceed to the next traversal (or terminate). (Best viewed in color.)

The perturbed graph is represented with different distributions
in the updated embedding space after employing the node repre-
sentation model, and we exploit the magnitude of change of the
embedding vector between the original input graph and perturbed
graph. If the subgraph plays an important role in the node em-
bedding of the target node, the effect of perturbation would be
significant; hence, the representation of the target node may be
located in a different space. In other words, it has different sur-
rounding neighbors in the new embedding space. We define the
magnitude of the subgraph’s importance as the change ratio of the
surrounding neighbors in the new embedding space. To find the
top-k nearest neighbors, we leverage an LSH hashing [15] to obtain
the nearest neighbors efficiently. If the score is 0, there is no effect
on the top-k neighboring nodes in the updated embedding space.
Meanwhile, when the score is 1, all of the surrounding neighbors
are changed because of the effect of the subgraph. Details of the
entire procedure are given in Algorithm 2. Our goal is to search
for the most important subgraph with the highest importance score
as the local explanation for the node embedding vector of a target
node E. It is defined as

G =argmax <?>A00=24,4<1 G Gy : E
Gy

M

where 4<1 is the node embedding vector, G is the input graph,
and Gg is a set of subgraphs that include the target nodeE. : is a
hyperparameter for the : ## function.

3.2 Illustrative example

Here, we use Zachary’s karate club dataset to describe why the
important score is related to the local impact. By setting a target
node, we can compare the importance of two different subgraphs
as an example. In Figure 2, our target node (node 8) is placed close
to nodes 9, 15, 22, 28, and 30, which are shown with red lines in the
embedding space learned from node2vec. In the case of A, subgraph
1, which consists of nodes 8 and 33, is a candidate explanation for
node 8. After perturbing the edges of subgraph 1 from the input

graph and re-learning the perturbed graph, we can obtain a new
embedding vector. In the new embedding vector space, the top-5
nearest neighbor nodes of node 8 are 9, 13, 19, 28, and 30, which
means that 40% of neighbors are changing. However, in the case
of B, subgraph 2 does not affect the top-5 nearest neighbor nodes
of the target node after perturbing and re-learning. Other nodes of
the top-k nearest neighbors may change, but not for node 8. As a
result, subgraph 1 plays a more important role in the embedding
vector of node 8 than subgraph 2.

3.3 MCTS-G: MCTS-based explanation subgraph
exploration method

There are numerous possible subgraphs for searching around a tar-
get node. Therefore, an efficient method for obtaining an important
subgraph is required. In this paper, the Monte Carlo tree search
(MCTS) [17] in reinforcement learning is leveraged to search for
the subgraph with the highest importance. MCTS uses Monte Carlo
simulations to accumulate value estimates that guide toward highly
rewarding trajectories in the search space, and helps to avoid brute
force searches; it exhibits good performance in many challenging
tasks (e.g., the Go game [16]).

There are four main steps in the MCTS algorithm: 1) selection,
2) expansion, 3) simulation, and 4) backpropagation. When we ini-
tialize the MCTS algorithm, we set the target node as the root node
in the tree graph and gradually expand the graph with neighboring
nodes of the input graph.

Selection. Given the tree graph, in this study, the search strategy
is to select the child node with a higher value using the following
UCB1 formula [1] below.

@)

In the aforementioned UCB1 formula, § indicates the 8 child
node of the parent node, and E represents the importance of the
subgraph. Eg is acquired by averaging the total value of the node and
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Figure 2: Comparison between two subgraphs with respect to the local importance to the learned embeddings. Cases A and B
show two example subgraphs as candidate explanations for target node 8 on the Karate club datasets. As a result, subgraph
1 has a more important role in the embedding vector of node 8 rather than subgraph 2 because it changes the top k nearest
neighbor nodes after perturbation and re-learning. (Best viewed in color.)

Selection Simulation
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Figure 3: An example of our MCTS algorithm to search for the important subgraph for a target node 8. For the selection, we
chose the child node with a higher UCB1 value. When we reach the leaf node with a visiting number that exceeds one, we
expand its child node from its neighbor nodes in the input graph. Following the path from bottom to top, we generate the
subgraph and update the importance of the subgraph as the value and visiting number into related nodes. (Best viewed in color.)

its child nodes. is the exploration term that provides a chance to Simulation. When we reach the unvisited leaf node, we generate

select the unvisited node, relaxing the exploration and exploitation
issues. # is the total number of visiting counts in the current tree,
and =g is the visiting number of the 8¢ child node.

Expansion. When selecting the child node using the UCB1
formula until the leaf node is reached, we consider the number
of visits to the leaf node to determine whether to expand the tree.
When the number of visits to the leaf node is more than one, the tree
satisfies the condition of expansion; hence, N nodes are randomly
sampled among the leaf node’s neighbors in the input graph.

a subgraph in the form of a path to travel from the bottom to the root
node on top. The generated subgraph is regarded as the candidate
of the important subgraph, and its importance score is measured
using Algorithm 1.

Backpropagation. To update the obtained information, we re-
newed the value and visiting number by using the nodes of the
generated subgraph. We simply add 1 to the visiting number of
visited nodes; however, in the case of the value, we should aver-

age the importance score of the related node with the equation
The sum of values

The number of visits - L1is process is repeated when the termination
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condition is satisfied. We pre-define the maximum number of nodes
in the subgraph (i.e., <0G=>34) as the termination condition. When
the number of nodes in the generated subgraph exceeds a prede-
fined number, the termination is declared. As a result, we can find
the importance subgraph with the highest value empirically among
the numerous option candidates as the subgraph using MCTS al-
gorithms. An example of our MCTS learning is shown in Figure
3.

3.4 Efficient re-learning

When we measure the importance of a subgraph, re-learning is
mandatory in the current problem setting. To reduce the compu-
tational burden, we developed an efficient way to obtain the up-
dated embedding vector. The main idea of our efficient re-learning
method is to update only the renewed part, which is affected by per-
turbation. To obtain the new embedding, we leverage EvoNRL [5],
which updates the random walk using an edge—index dictionary
that indicates the location of edges in generated walks. Then, to
apply renewed walks into the embedding vector, we fine-tune the
neural weights using only the renewed part. The update strategy
can reduce the time complexity to $,00”, where 0 is the number
of affected random walks, and C is the number of epochs in fine-
tuning. Notably, they are all constants, which are much smaller
than the total number of random walks. Overall, the total time
complexity of our model in the generation stage corresponds to
$,00 j+j 2=06=>34 1n yhere <06=>34 represents the number of
possible nodes for an explanation and j+ | is the number of vertices.
<0G=>34 is given for the MCTS as a hyper-parameter, and j+ ] is
required to obtain the top-k nearest neighbors.

4 EXPERIMENTS

We evaluate our proposed method by computing how much found
subgraphs are important to the input node embedding. In the evalu-
ation, we use two real-world datasets; Zachary’s karate club dataset
as a social network and Cora dataset [3] as a citation network. For
an evaluation metric, the subgraph importance score (as in Algo-
rithm 2) is used to measure the local impact with respect to target
nodes, and our model is compared to other baselines. We note that
the fast embedding update method (Section 3.4) is not used when
evaluating the found subgraphs.

4.1 Experimental setting

Common parameters for all experiment are following; ?=1, @=1,
and dimension=128 for node2vec [3]. For other hyper-parameters
on the Karate club dataset, we set the parameters as window-size=2,
num-walks=300, walk-length=5, top-k neighbors=5, and =1.5 for
a better separation among nodes. In the experiment using the Cora
dataset, we set the parameters as window-size=5, num-walks=10,
walk-length=100, top-k neighbors=10, and =1. For learning the
node2vec, there are various random seeds in the generator of ran-
dom walks and samplers of the skip-gram model. All of them should
be controlled strictly to capture the impact of the subgraph. Fur-
thermore, when training the skip-gram model, we need to set the
number of workers as one. By controlling the random seed initial-
ization, we could achieve robust reproducibility in all experiments.
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Table 1: Averaged importance scores of the found explana-
tions in the Karate dataset. The values 3, 5, and 7 represent
<0G=>34 when subgraphs are generated. We note that Taxon-
omy induction does not consider <06G=>34.

Model 3 5 7 Average
Taxonomy induction - - - 0.287
RW-G* 0.294 0.3 0.294 0.296
RW-G 0.329 0.365 0.382 0.359
MCTS-G* (Our model) 0.435 0.594 0.647 0.559
MCTS-G (Our model) 0.518 0.618 0.7 0.612

4.2 Baseline methods

To demonstrate the performance of our proposed method, we com-
pare our proposed method to the existing post-hoc explanation
methods and data-level explanation methods as below.

First, we use the Taxonomy induction method [8] as a baseline by
utilizing the clusters that are obtained from the graph construction
on the embedding vector. Although it is designed to provide a global
view of the learned embeddings, we expect that the cluster, which
includes the target node, can also provide a meaningful post-hoc
explanation with respect to the target node. We set the number of
clusters in the Karate club dataset as 5 and in the Cora dataset as
100.

Second, by generating a random walk (RW) from a target node
over the input graph, we can also leverage the RW for an (alter-
native) explanation of the target node. Because the RW can also
represent neighbors of the target node and is used for learning
the node2vec, this allows us to evaluate whether explanations of
our model have meaningful gains. In other words, RWs can pro-
vide the data-level explanations in input graph space. We note that
our MCTS-G finds post-hoc explanations in the learned embedding
space. We summarize baselines as below:

Taxonomy induction identifies an important subgraph that is
a cluster, which includes a target node. The cluster is found
from [8].

RW-G* finds an important subgraph that is generated based
on the random walk. For a fair comparison, the edge sam-
pling of RW-G* was repeated until the number of nodes and
edges in the graph was the same as that of our proposed
method. Here, * means that we do not use the re-learning
method (Section 3.4).

RW-G finds an important subgraph, that is generated based
on the random walk. For a fair comparison, the edge sam-
pling of RW-G* was repeated until the number of nodes and
edges in the graph was the same as that of our proposed
method. Here, we use the re-learning method (Section 3.4).

The baselines above are compared to our methods:

MCTS-G* finds an important subgraph, which is generated
from our proposed method in Section 3.3. Here * means that
we do not use the re-learning method (Section 3.4).
MCTS-G finds an important subgraph, which is generated
from our proposed method in Section 3.3. Here we use the
re-learning method (Section 3.4).
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